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The Darcy–Boussinesq equations at infinite Darcy–Prandtl number are used to study
convection and heat transport in a basic model of porous-medium convection over
a broad range of Rayleigh number Ra. High-resolution direct numerical simulations
are performed to explore the modes of convection and measure the heat transport, i.e.
the Nusselt number Nu, from onset at Ra =4π2 up to Ra =104. Over an intermediate
range of increasing Rayleigh numbers, the simulations display the ‘classical’ heat
transport Nu ∼ Ra scaling. As the Rayleigh number is increased beyond Ra = 1255,
we observe a sharp crossover to a form fitted by Nu ≈ 0.0174 × Ra0.9 over nearly
a decade up to the highest Ra. New rigorous upper bounds on the high-Rayleigh-
number heat transport are derived, quantitatively improving the most recent available
results. The upper bounds are of the classical scaling form with an explicit prefactor:
Nu � 0.0297×Ra. The bounds are compared directly to the results of the simulations.
We also report various dynamical transitions for intermediate values of Ra, including
hysteretic effects observed in the simulations as the Rayleigh number is decreased
from 1255 back down to onset.

1. Introduction
Buoyancy-driven flows such as thermal convection are of great importance for a

wide range of phenomena in geophysical, astrophysical and engineering applications.
Rayleigh–Bénard convection in particular is a fundamental paradigm for nonlinear
dynamics including instabilities and bifurcations, pattern formation, chaotic dynamics
and developed turbulence (Kadanoff 2001). Despite the great deal of attention that has
been devoted to it, the dynamics of high-Rayleigh-number (Ra) convective turbulence
and the associated enhancement of the heat transport (represented by the Nusselt
number Nu) still present challenges for theory and experiment.

At the time of writing there are still a number of questions regarding the Nu–Ra

relationship in fluids presumed to be well-described by the Boussinesq equations.
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There, just beyond onset the classical marginally stable boundary layer argument
predicts a Nu ∼ Ra1/3 ‘soft turbulent’ scaling (Howard 1964). At higher Rayleigh
numbers a so-called ‘hard turbulence’ regime sets in along with the appearance of a
large-scale flow and the data are better fitted by a Ra2/7 scaling (Heslot, Castaing &
Libchaber 1987). Recent experiments over an extremely large range of Rayleigh
numbers report an exponent closer to 0.31, a value between the soft and hard
exponents (Niemela et al. 2000). On the other hand, high-precision experiments over
a more limited range of Ra have called into question the validity of the scaling
hypothesis altogether (Xu, Bajaj & Ahlers 2000), although this may be explained
by crossovers among different scaling regimes (Grossmann & Lohse 2000). The
longstanding theoretical conjecture of a Nu ∼ Ra1/2 ‘ultimate’ asymptotic scaling by
Kraichnan (1962) and Spiegel (1971) has been proven to be the upper limit for
scaling in the basic model (Howard 1963; Busse 1969; Doering & Constantin 1996;
Nicodemus, Grossmann & Holthaus 1998; Otero et al. 2002; Plasting & Kerswell
2003), but the experimental data are currently considered controversial and do not
constitute a conclusive consensus (Chavanne et al. 1997; Glazier et al. 1999; Sommeria
1999). Moreover, fully developed turbulent convection in simple fluids described by the
Boussinesq equations is still sufficiently complex dynamically that direct numerical
simulations lag well behind experiments in terms of the magnitude of Rayleigh
numbers that can be achieved (Kerr & Herring 2000). Even in the infinite-Prandtl-
number limit of the Boussinesq equations, where Navier–Stokes dynamics are replaced
by the linear Stokes equations, unresolved mathematical challenges remain (Chan
1971; Constantin & Doering 1999; Doering & Constantin 2001; Otero 2002).

In this paper we focus on what may be the simplest dynamical setting for Rayleigh–
Bénard convection, flow in a fluid-saturated porous layer modelled by the Darcy–
Oberbeck–Boussinesq equations in the infinite Darcy–Prandtl number limit. This
system distills the physics of convection down to a ‘minimal’ coupling of the heat
advection–diffusion equation to Darcy’s equation for the incompressible flow field via
a simple buoyancy force. Our aim is to push outward the computational and rigorous
analytical limits of what is known about the complex nonlinear dynamics that the
interplay of these basic mechanisms (buoyancy and incompressibility) can produce.
We study this simple model in order to better understand both the physics of these
processes and the technical mathematical tools at our disposal.

Porous-media convection is of interest for a variety of geological and engineering
applications, and this particular model has proven to be a useful quantitative model
over a range of Rayleigh numbers (Nield & Bejan 1992). Its dynamics and bifurcation
structure have been thoroughly explored theoretically and computationally for low-
to-intermediate Rayleigh numbers both for the standard Rayleigh–Bénard problem
studied here (Graham & Steen 1994), and more recently for an open-top version of
the problem (Cherkaoui & Wilcock 1999). For any real application, however, this
model is expected to break down at sufficiently high Rayleigh numbers when length
scales in the flow and temperature fields shrink down to the pore length scale in
the medium (Lister 1990); beyond that a quadratic drag law should replace Darcy’s
Law for the flow (Nield & Joseph 1985). Furthermore, it is likely that there is a
practical limit to the magnitude of the Rayleigh numbers that may be explored
for this model in the laboratory (Shattuck et al. 1997). This is because the higher
the Rayleigh number is pushed, the smaller the pore scales must be for the model
to remain valid, which means the slower the convection evolves so that even in
well-controlled experiments inevitable extraneous heat losses, interruptions, and finite
lifetimes of the experimenters themselves would undoubtedly conspire to frustrate
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reliable long-term measurements of stationary-state dynamics. Nevertheless, from a
purely theoretical viewpoint the mathematical and computational simplicity of this
model makes it an attractive system to explore in the high-Rayleigh-number limit.
Indeed, well-controlled ‘numerical experiments’ on this system can produce highly
resolved simulations providing reliable insights into the nonlinear dynamics and data
for comparison with theory and mathematical analysis.

The rest of this paper is organized as follows: In § 2 we set out the details of the
model and present some basic definitions. In § 3 we describe the numerical methods
and present the results of the simulations. Section 4 contains the derivation of
improved rigorous upper bounds for the heat transport as a function of the Rayleigh
number. The concluding § 5 is a brief summary and discussion of the results, including
a comparison of the rigorous bounds with the data from the numerical experiments.

2. Statement of the problem
We consider a layer of fluid-saturated porous material confined between two

horizontal plates at z =0, z = 1. The temperature field T (x, t), the velocity field

u(x, t) = îu + ĵv + k̂w, and the pressure P (x, t) evolve according to

Tt + u · ∇T = �T, (2.1)

∇ · u = 0, (2.2)

u + ∇P = k̂Ra T . (2.3)

This model is obtained from the Darcy–Oberbeck–Boussinesq equations after non-
dimensionalizing and taking the infinite Prandtl–Darcy number limit (Nield & Bejan
1992). Only one dimensionless parameter, the Rayleigh number

Ra =
gα(Tbot − Ttop)Kh

νκ
, (2.4)

remains. The various quantities in this Rayleigh number are the acceleration due
to gravity g in the vertical (z) direction, the thermal expansion coefficient of the
fluid α, the temperature drop across the plates Tbot − Ttop, the Darcy permeability
coefficient K (the square of a small pore length scale characterizing the medium), the
height of the layer h, and the diffusivity constants for momentum ν and heat κ . The
non-dimensional temperature of the bottom and top plates is held fixed at 1 and 0,
respectively. We impose periodic boundary conditions on all the dynamical variables
in the horizontal (x and y) directions and, because fluid is not allowed through the
plates, w

∣∣
z =0,1

= 0.

Our goal is to observe, from direct numerical simulations, and estimate, from first
principles via rigorous upper bounds, the bulk-averaged vertical heat transport as
measured by the Nusselt number

Nu =

〈
1

A

∫
(uT − ∇T ) · k̂

〉
= 1 +

1

A

〈∫
wT

〉
, (2.5)

in terms of the Rayleigh number. In (2.5), A is the (non-dimensional) area of the
plates,

∫
f denotes a volume integral over the entire fluid layer, and the angle brackets

indicate the long-time average

〈f 〉 = lim
T →∞

1

T

∫ T

0

f (t) dt (2.6)

(presuming, as we will for the purposes of this study, that these long-time limits exist).
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From the equations of motion it is straightforward to derive equivalent expressions
for the Nusselt number,

Nu = − 1

A

〈∫
z=0

∂T

∂z
dx dy

〉
= − 1

A

〈∫
z=1

∂T

∂z
dx dy

〉
=

1

A
〈‖∇T ‖2〉, (2.7)

where ‖f ‖ = (
∫

|f |2)1/2.

3. Numerical simulations
We compute two-dimensional numerical solutions of the model equations (2.1),

(2.2), (2.3), dropping the y-dependence of all variables and setting v = 0. As a matter
of convenience, we recast the problem using the deviation of the temperature field
from the conduction solution, Θ = T − (1 − z), and the stream function ψ where
(u, w) = (−ψz, ψx). The boundary conditions for these new variables are

Θ
∣∣
z=0,1

= 0 and ψx

∣∣
z=0,1

= 0. (3.1)

The equations of motion are then

Θt + ∇ · (uΘ) − w = �Θ, (3.2)

�ψ = Ra Θx. (3.3)

The numerical method we use for approximating (3.2)–(3.3) is a spatially fourth-
order finite difference scheme, second order in time, on a grid with spacings �x and

�z in x and z, respectively. Denote by D̃ and D2 standard second-order centred finite
difference approximations of ∂ and ∂2, respectively. First, (3.2) is formally discretized
spatially using fourth-order compact operators as

Θt +

(
D̃x

1 + 1
6
(�x)2D2

x

(uΘ) +
D̃z

1 + 1
6
(�z)2D2

z

(wΘ) − w

)

=

(
D2

x

1 + 1
12

(�x)2D2
x

+
D2

z

1 + 1
12

(�z)2D2
z

)
Θ. (3.4)

Then multiply through by the common denominator of the operators in the diffusion
term, using the fact that (1 + (�x)2D2

x/6)
−1

= (1 − (�x)2D2
x/6)+O(h4) – and similarly

for the third term in (3.4) – and simplify. Incompressibility gives D̃x(uΘ)+ D̃z(wΘ)=
uD̃xΘ + wD̃zΘ + O(h2), which is used in order to avoid one-sided approximations in
the convection term near the boundaries. Then discarding all terms involving O(h4)
gives the desired implementable fourth-order discretization.

For the time discretization, in order to avoid any stability constraint due to
the O(1) diffusion coefficient, the diffusion term is treated implicitly using Crank–
Nicholson, while the convection term (including −w) is discretized via the second-
order explicit Adams–Bashforth scheme. The result is a discrete Poisson-like equation
for computing Θn+1 given (Θn, un, wn) and (Θn−1, un−1, wn−1), which is solved using
FFT-based methods with Dirichlet boundary condition Θ

∣∣
z = 0,1

= 0 and periodic

boundary conditions in x. Stability requires

�t �
h

‖u‖∞
= CFL � 1,

where �t is the time step and h = min {�x, �z}.
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Figure 1. (a) Horizontally averaged and time-averaged vertical temperature profile at Ra = 5000.
The individual data points show the high spatial resolution. (b) Time series of the bulk averaged
instantaneous heat flux nu(t) = 1 + (1/A)

∫
w(·, t)T (·, t) at Ra = 5000. The individual data points

shown are spaced more than 100 time steps �t apart, illustrating the fine temporal resolution.

Next, a fourth-order discretization of (3.3) is given by(
D2

x

1 + 1
12

(�x)2D2
x

+
D2

z

1 + 1
12

(�z)2D2
z

)
ψ = RaD̃x

(
1 − (�x)2

6
D2

x

)
Θ. (3.5)

Thus given Θn+1 we solve this discrete Poisson equation for ψn+1 with Dirichlet
boundary conditions ψ

∣∣
z=0,1

= 0 and periodic boundaries in x, again using FFT-

based methods. Lastly, un+1 is recovered from ψn+1 via (u, w) = (−ψz, ψx) using the
fourth-order long-stencil approximations

u = −D̃z

(
1 − (�z)2

6
D2

z

)
ψ and w = D̃x

(
1 − (�x)2

6
D2

x

)
ψ. (3.6)

Note that the first equation in (3.6) requires values of ψ at two computational points
outside of the domain along the boundaries. These are consistently prescribed by
noting that (3.3) and (3.1) imply that ψzz =0 along the boundaries. Both a one-sided
and centred fourth-order discretization is applied to this, from which the required
values are derived.

The protocol for our numerical experiments was to begin just above Rac = 4π2 ≈
39.5 and step-by-step increase the Rayleigh number by a constant factor, allowing
the flow to settle into a stationary dynamical state – a steady, periodic, or statistically
stationary chaotic (turbulent) state – at each stage before increasing Ra further. After
this ‘run’ to high Ra, another such run was made from high Rayleigh numbers back
down to onset, decreasing Ra by a constant factor and allowing relaxation at each
step, to explore hysteretic effects in the dynamics.

Specifically, simulations were performed starting from a small perturbation of the
conduction state at Rayleigh number of Ra = 50 on a cell of size [0, 2] × [0, 1].
After it was determined that the flow had reached a statistical steady state, Ra was
increased by a multiple factor of 101/10. At each stage we take δ = 15Ra−1 as a
conservative approximation of the thermal boundary layer thickness, and the grid
resolution �x =�z is chosen to ensure that approximately five grid points fell within
the thermal boundary layer. In fact we over-resolve the flow in space and time to
ensure the reliability of the results. To illustrate this, in figure 1(a) we show plots
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Figure 2. Plot of Nu vs. Ra data for the increasing-Ra run. The asterisks indicate the data from
simulations in a cell of aspect ratio 2, the circle at the highest Ra is from a cell of aspect ratio 1,
and the circled-asterisk data points were measured for both aspect ratio 1 and 2 with no discernible
difference in Nu .

of the horizontally averaged and time-averaged vertical temperature profile and in
figure 1(b) a time series of the bulk-averaged instantaneous heat flux nu(t) = 1 +
(1/A)

∫
w(·, t)T (·, t) at Rayleigh number Ra = 5000. The data in the profile plot show

the spatial resolution, and the data points shown in the time series are O(100) × �t

apart, showing the extremely high spatio-temporal resolution that was employed. We
also remark at this point that while the Ra values we explore in this model (up to
Ra = 104) may not seem very high to those familiar with Boussinesq fluids, the Nusselt
numbers obtained here (up to over 70) correspond to significantly higher Rayleigh
numbers in those models. For example at Ra = 5000 with the temperature profile
shown in figure 1(a) the Nusselt number of 40 corresponds to an O(108) Rayleigh
number for the infinite Prandtl number limit of the Boussinesq equations.

Data for the Nu vs. Ra relationship from the numerical solution of equations
(2.1)–(2.3) are presented in figures 2 and 3. The data points are essentially of two
types: asterisks indicate data for which Ra was increased from the bifurcation point
to Ra = 104 in a cell of aspect ratio 2 (this run is denoted by Ra↗), and stars in
figure 3 indicate data for which Ra was decreased from a value of Ra = 1255 to its
bifurcation value (this run will be referred to by Ra↘). The last data point of the
Ra↗ run (namely, Ra = 104) was for a domain of aspect ratio 1 in order to reduce the
computation time by a factor of 2 and is indicated with a circle. For this value of Ra
the dominant dynamical feature of the fluid motion is plume or ‘blob’ shedding from
the thin thermal boundary layers. The plumes traverse the height of the box, having
little or no interaction with more horizontally distant plumes, so we expect that the
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Figure 3. The data from the run with increasing Ra is shown together with data for the run in
which Ra was decreased from Ra = 1255, indicated by stars. The heat transport for the 2-pair and
3-pair steady roll solutions is shown by the dotted line.

average vertical heat transport over half the box should be the same as that over the
entire cell. To confirm this we re-computed the numerical solution on a cell of aspect
ratio 1 for the four previous highest values of Ra leading up to Ra =104. As is seen in
figure 2, the heat transport for the aspect ratio 1 solutions (also indicated with circles)
agrees with that of the aspect ratio 2 solutions. This aspect ratio independence of Nu
at high Ra is distinct from the behaviour of fluid convective turbulence, perhaps due
to the lack of a large-scale circulation.

Important features of the Nu vs. Ra data plotted in figure 2 are best discussed
with the aid of visual images of the solution for different values of the Rayleigh
number. In figure 4 we provide snapshots of the temperature field at various Rayleigh
numbers from the Ra↗ run. Between onset and Ra ∼ 500, the simulation shows a
pair of steady, nonlinear rolls that simply increase in strength as Ra increases; note
that the horizontal periodicity prevents a solution consisting of a single roll in the
cell. Solutions in the Ra regime between 500 and 1200 (the beginning of the high-Ra
regime) display a rich variety of dynamics that have been studied in considerable
detail (Graham & Steen 1994; Cherkaoui & Wilcock 1999). For values of Ra slightly
above 500, a secondary instability begins to dominate. The instability appears as
a disturbance in the boundary layer that propagates into the vertical components
of the roll as can be seen in figure 4(a–c). This new feature of the dynamics is
accompanied by a noticeable change in the heat transport properties of the flow.
At the point Ra = 500, the Nu–Ra curve bends sharply upward and, in the range
500 � Ra � 1200, the curve scales according to Nu ∼ 0.0091Ra1.03. The scaling is over
a limited range of Ra (about an octave), and it is not very clean there, but at this
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Figure 4(a). For caption see facing page.

resolution in Ra the heat transport has its largest slope in this region; see Graham &
Steen (1994) for further discussion.

Continuing up the Ra↗ run, we observe that between Ra =1255 and Ra = 1581
the motion changes rather abruptly from time-dependent rolls to plume shedding,
as is evident in figure 4(d–f ). The Nu–Ra relationship also undergoes an abrupt
change over this interval. In fact, it decreases in going from Ra =1255 to Ra = 1581
(see figure 2). For values of Ra greater than 1581 the fluid motion continues to be
dominated by blobs of hot (cold) fluid breaking off the bottom (top) boundary layer
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Figure 4. Snapshots of the temperature field for (a) Ra= 315, (b) 500, (c) 1255, (d) 1581,
(e) 5000, (f ) 7924.

and drifting upward (downward). We refer to the dynamics in this Rayleigh number
regime as ‘turbulent’, at least in the sense that it is spatially and temporally chaotic
(presumably) displaying dynamics over a range of length scales. We also observe a
robust ‘anomalous’ Nu–Ra scaling to emerge in this high-Ra range. The best fitting
power law to the data has an exponent very close 0.9, clearly distinct from the classical
Nu ∼ Ra scaling law. The anomalous scaling regime we observe is relatively small –
on the order of a single decade – and so the deviation from exponent 1 could be
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attributed to logarithmic terms or other transient corrections to scaling. It would be
necessary to push the Rayleigh number significantly higher to resolve these questions,
but we did not go beyond Ra =104 in this series of experiments due to computing
time restraints.

Hysteretic effects are also present in the dynamics in the Rayleigh number regime
(500 � Ra � 1200). Following the data for the Ra↘ run indicated by stars in figure 3,
we observed that for decreasing Ra starting with an initial condition in the ‘turbulent’
state, the solution follows several different branches back down to Rac, none of which
agree with the solution obtained for increasing Ra. Initially, for Ra values roughly
between 1000 and 160, the solution favours three pairs of steady rolls in the 2 × 1 cell
in contrast to the single pair observed on the Ra↗ run. As Ra is reduced from 160 to
100, the solution jumps to two pairs of rolls exhibiting a significant increase in the heat
transport. Finally, as Ra is reduced from 79 through 50 or so, the solution switches
from two pairs of rolls to the single pair, again with an increase in the heat transport.
These steady multiple roll solutions bifurcate off the Nu= 1 line at values of Ra
higher than Rac =4π2, and they are born unstable. However they do enjoy a limited
band of stability that the Ra↘ run explores; the Ra↗ run bypasses these solutions
altogether. These nonlinear, steady roll solutions – be they stable or unstable –
were computed numerically by solving the steady equations using Newton’s method
and their heat transport compared well with those from simulation runs. The heat
transport in the directly computed steady flows is shown as the dotted curves in
figure 3.

4. Variational (upper) bound on the heat transport
In this section we develop an implementation of the variational ‘background field’

approach to bounding the heat transport (Doering & Constantin 1996; Nicodemus,
Grossmann & Holthaus 1997). This method was recently applied to the model at
hand (Doering & Constantin 1998), but the analysis here will produce a better (i.e.
lower) bound. The background method produces rigorous limits on the time-averaged
bulk transport for any solutions of the equations of motion. It is an alternative to
the power integral method for statistically stationary solutions pioneered by Howard
(1963) and the multiple boundary layer method introduced by Busse (1969), which has
also been applied to porous-medium convection by Busse & Joseph (1972), Gupta &
Joseph (1973) and Vitanov (2000). The two techniques are deeply inter-related, as
has been established by Kerswell (1998), but in practice the background method is
convenient for producing rigorous estimates for high Rayleigh numbers, so we use
that technique here.

The background method begins with a functional translation of the temperature
field by a ‘background field’, a time-independent function that carries the inhomo-
geneous boundary conditions:

T (x, t) = τ (z) + θ(x, t) (4.1)

with

τ (0) = 1, τ (1) = 0. (4.2)

The boundary conditions for τ – which is otherwise arbitrary at this point – force the
fluctuations θ to vanish at the top and bottom plates.
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The bounds are derived by appropriately combining relevant energy equations. In
this case we consider

1

2

d

dt
‖θ‖2 = −‖∇θ‖2 +

∫
θτ ′′ −

∫
θwτ ′ (4.3)

and

‖∇T ‖2 = ‖∇θ‖2 + 2

∫
θzτ

′ + A

∫ 1

0

τ ′(z)2 dz. (4.4)

Taking the long-time average of the linear combination c×(4.3) + (4.4), where c > 1,
and using (2.7) gives

Nu =

∫ 1

0

τ ′2 dz − Fτ [θ, w] (4.5)

where

Fτ [θ, w] =
1

A

〈∫
((c − 1)|∇θ |2 + cθwτ ′ + (2 − c)θτ ′′)

〉
. (4.6)

The functional arguments of F satisfy Dirichlet boundary conditions at z = 0, 1.
As is typical of many convection models where inertia plays no role, the velocity
field is slaved to the temperature field according to a pointwise constraint. Here the
constraint is derived from (2.3) by eliminating the pressure:

−�w = Ra(D2 − �)θ (4.7)

where we have introduced the notation D= d/dz. The minimum value, Fmin, of the
functional F over all fields θ and w satisfying homogeneous Dirichlet boundary
conditions and the constraint in (4.7) can be computed in terms of the background
field; see Doering & Constantin (1998) for the complete details. The expression for
Fmin is then used in (4.5) to derive the bound

Nu � 1 +
1

4a(1 − a)

∫ 1

0

(τ ′ + 1)2 dz, (4.8)

where a =1 − c−1 is now a real number which must lie between 0 and 1. To ensure
that Fmin > −∞ exists, it is necessary to require that the quadratic part of F, namely

H[θ, w] =
1

A

〈∫
(a|∇θ |2 + θwτ ′)

〉
, (4.9)

is positive semi-definite. That is, for any background profile τ (z) and parameter
value 0 < a < 1 for which H [θ, w] is positive semi-definite, the expression on the
right-hand side of (4.8) is an upper bound on the Nusselt number.

The positivity constraint for the quadratic form is a spectral constraint for the
elliptic operator L in H, where the eigenvalue problem λθ = Lθ is

λθ = −2a�θ + τ ′w + (D2 − �)W,

0 = �w + Ra(D2 − �)θ,

0 = �W + Raτ ′θ,

 (4.10)

introducing W (x) as the Lagrange multiplier field for the constraint in (4.7); it satisfies
the same boundary conditions as w and θ . The condition H � 0 is equivalent to
λ0 � 0, where λ0 denotes the lowest eigenvalue of (4.10). Hence we may rewrite the
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variational problem as

Nu − 1 � inf
0<a<1, τ∈S

(
1

4a(1 − a)

∫ 1

0

(τ ′(z) + 1)2 dz

)
(4.11)

where

S =

{
τ :

∫ 1

0

(τ ′(z) + 1) dz = 0, λ0(τ ) � 0

}
. (4.12)

We will not compute the absolute minimum bound, as this is both beyond exact
analysis and an extremely difficult computational problem.† As an alternative to either
a numerical solution to the full variational problem or a less-than-optimal analytical
estimate of the optimal bound from above, we take an intermediate approach. We
restrict the set of profiles to a one-parameter subset of S and then optimize over this
restricted set. That is, we solve the variational problem:

Nu − 1 � inf
0<a<1, τ∈T

(
1

4a(1 − a)

∫ 1

0

(τ ′ + 1)2 dz

)
(4.13)

where

T = {τδ : λ0(τδ) � 0} ⊂ S (4.14)

with λ0 the lowest eigenvalue of the operator in (4.10) with τδ in place of τ . Because
the set T lies within S, the solution to (4.13) provides a bound from above for
the solution of the full variational problem (4.11); we refer to it as a ‘semi-optimal’
bound. The single parameter for the family T is δ, with 0 < δ � 1

2
, where the profiles

τδ are piecewise linear:

τδ(z) =



1 − z

2δ
, 0 � z � δ

1

2
, δ � z � 1 − δ

1 − z

2δ
, 1 − δ � z � 1.

(4.15)

The piecewise linearity of the τδ profiles greatly simplifies the Euler–Lagrange
equations in (4.10); they permit exact solution with far more ease than the full
variational problem.

The functional to be minimized is∫ 1

0

(τ ′
δ + 1)2 dz =

(
1

2δ
− 1

)
, (4.16)

so δ must be chosen as large as possible, while still satisfying the spectral constraint.
A wavenumber naturally enters the problem by virtue of the horizontal periodicity
of the fluctuation field θ (and w and W ). For (non-dimensional) horizontal periods
Λx and Λy in the x- and y-directions respectively, we Fourier transform the fields

† A complete numerical solution to such a background variational problem has only very
recently been carried out for the first time – for the case that includes turbulent Couette flow and
Rayleigh–Bénard convection in a Boussinesq fluid at finite Prandtl number – by Plasting & Kerswell
(2003).
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according to

f (x, y, z) =
∑

k

eik · xfk (z), (4.17)

where now x = (x, y), k = 2π(n/Λx, m/Λy) for integers n and m. Then the eigenvalue
problem in (4.10) becomes (with k2 = |k|2)

λkθk = −2a(D2 − k2)θk + τ ′
δwk + k2Wk ,

0 = (D2 − k2)wk + Rak2θk ,

0 = (D2 − k2)Wk + Raτ ′
δθk .

 (4.18)

For each wave vector k there is a convex set of background profiles characterized by
λ0

k
(τ ) � 0 and the corresponding isospectral surface λ0

k
(τ ) = 0. Because the spectral

constraint is imposed mode by mode, we are naturally led to a value of δ for each
value of k. From this set of possible values for δ we must choose a single value that
ensures the spectral constraint is satisfied for all values of k. It can then be argued
from the underlying functional geometry that a strategy for choosing the optimal
value of δ is:

To each value of k, there corresponds a value of δk which deter-
mines the k-optimal background τδk

. The optimal background
τδopt

is selected by choosing δopt to be the minimum of all δk ,

ensuring that λ0
k
(τδopt

) � 0 for all wavenumbers.

This is our procedure for solving (4.13). Fix values of a and Ra . For all but finitely
many of the k we have λ

gr

k (τ1/2) > 0. For the remaining k we solve the system of
ODEs in (4.18) adjusting δ so that λgr

k (τδ) = 0. (In general, λ may vanish for more than
one δ. These other zeros correspond to higher eigenvalues in the spectrum and they
necessarily occur for larger values of δ.) In this way we produce a (finite) sequence of
δk and, as described above, δopt is precisely the smallest of all the δk . Then, keeping
Ra fixed, we choose a so as to minimize the value of the bound

Nu � 1 +
1

4a(1 − a)

∫ 1

0

(τ ′
δ + 1)2 dz (4.19)

= 1 +
1

4a(1 − a)

(
1

2δ(a, Ra)
− 1

)
. (4.20)

The minimization over a produces a single value of δ for a given value of Ra ,
δ = δ(Ra), and then inserting δ = δ(Ra) into (4.19) produces the desired bound of Nu
in terms of Ra .

Of course, optimizing over the restricted set T (4.14) will not result in the absolute
optimal bound. However, it is reasonable to suspect that the resulting ‘semi-optimal’
bound will be close to true optimum, perhaps even approaching it in the limit
Ra → ∞. Restricting the set of profiles is not the only way to simplify the full optimal
problem. In Doering & Constantin (1998) the variational problem was modified by
strengthening the constraint slightly (the goal being to eliminate the wavenumber
dependence from the optimization problem altogether) and then carrying out the full
optimization for the ‘new’ problem. That result will be used as a benchmark with
which we may see the improvement of the new bound to be derived here.

Because τ ′
δ is discontinuous, (4.18) with λk = 0 must be solved separately in the

three regions [0, δ], [δ, 1 − δ], [1 − δ, 1] with the solutions and their first derivatives
matched across the boundaries. The end result is a linear problem in 18 variables. The
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invariance of the equations under the change of variable z → 1 − z may be used to
show that the lowest eigenfunctions we seek are even about z = 1

2
, so their derivatives

vanish there. This symmetry reduces the domain for our problem to only two regions,
say region I = [0, δ] and region II = [δ, 1

2
], and hence to a problem of 12 variables

with boundary conditions:
(i) homogeneous Dirichlet boundary conditions at z =0;
(ii) solutions and their first derivatives are continuous at z = δ;
(iii) homogeneous Neumann boundary conditions at z = 1

2
.

Hence in region I = [0, δ] the solution is

θk = A1 sinh(p1z) + A2 sinh(p2z),

wk = −Rak2

Γ
(A1 sinh(p1z) − A2 sinh(p2z)) + A3 sinh(kz),

Wk =
Ra

2δΓ
(A1 sinh(p1z) − A2 sinh(p2z)) +

1

2δk2
A3 sinh(kz),


(4.21)

where Γ =
√

Rak2/2aδ, p1 =
√

k2 + Γ , p2 =
√

k2 − Γ , and the undetermined constants
are A1, A2, A3. And in region II = [δ, 1

2
], using ζ = z − 1

2
, the solution is

θk = α1 cosh(kζ ) + α2ζ sinh(kζ ),

wk = −α1

Rak

2
ζ sinh(kζ ) + α2

Ra

4
(ζ sinh(kζ ) − kζ 2 cosh(kζ )) + α3 cosh(kζ ),

Wk =
4a

k
α2 cosh(kζ ),


(4.22)

where α1, α2, α3 are the undetermined constants.
The boundary conditions at z = 0 and z = 1

2
have already been imposed, which

explains why there are only six undetermined coefficients above. Imposing the
remaining six matching conditions at z = δ, we obtain a sixth-order homogeneous
linear system in the unknowns A1, A2, A3, α1, α2, α3. In order to obtain a solution,
the matrix of coefficients, which depends on a, Ra, k and δ, must have a vanishing
determinant. Adjusting δ to ensure that the determinant does vanish produces the
value of δk for each k and fixed Ra and a. Once the values of δk for the relevant
k have been found, we must choose the smallest one to ensure that the spectral
constraint is satisfied for all k. This gives us a value of δ for the given values of a

and Ra . Next we minimize the bound in (4.8) over a, thus producing a value of δ for
each value of Ra . Inserting the relation δ = δ(Ra) into (4.8) provides an upper bound
for Nu in terms of Ra . The result is shown in figure 5.

We first observe that the numerical bound bifurcates from the proper value
Rac = 4π2; this is one of the benefits of using the balance parameter a, first introduced
in the context of shear flow by Nicodemus et al. (1997). On the other hand, this bound
significantly overestimates the heat transport for values of Ra just above Rac. The
reason for that is that for such low values of Ra a piecewise linear profile like τδ that is
flat in the middle is not a very good approximation of the optimal temperature profile,
which is a smooth perturbation of the linear conduction profile. In any case, for Ra
values larger than roughly 200, the bound exhibits a very definite scaling according to
Nu ∼ 0.0297Ra , representing a 15% prefactor improvement in the asymptotic bound
Nu � 9

256
Ra ≈ 0.0325Ra derived in Doering & Constantin (1998).
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Figure 5. The bound derived in this paper is indicated by the solid line. It is extremely well-fitted
by the formula Nu = 0.0297Ra for Ra > 250. The dotted line is the previous best rigorous bound
(Nu ∼ 0.0352Ra asymptotically for large Ra) obtained in Doering & Constantin (1998). The
minimum of these two curves is now the best bound.

5. Conclusions
We have presented the results of a detailed, highly resolved set of numerical

experiments on a model of convection in a fluid-saturated porous layer along with
measurements of the heat transport. We observe that as the Rayleigh number is
increased adiabatically, the flow passes from a steady state to more complex dynamical
states. The complex dynamics comes in two general varieties. One is time dependent
(temporally periodic or perhaps chaotic) but with the spatial structure of the flow still
being dominated by the single pair of rolls created at onset. The heat transport in this
state is reasonably well-described by the classical Nu ∼ Ra scaling. The other mode
of convection, appearing at high Rayleigh number, is a state where the long-range
spatial coherence is lost and what might be characterized as a ‘turbulence’ sets in. The
dynamics is dominated by blobs of hot (cold) fluid breaking away from the bottom
(top) boundary layer and convecting across the layer. No large-scale flow appears,
as is seen in the hard-turbulence regime of fluid convection, but the Nusselt number
scaling decreases in analogy with that transition. In this turbulent state of convection
in the porous layer model, the heat transport is better described by a Nu ∼ Ra0.9 fit,
and this scaling is quite robust over nearly an entire decade of Ra. It is not clear if
this correction to the classical scaling really is an exponent change, or if there are
logarithmic corrections, or if it is a transient deviation that will ultimately revert back
to a Nu ∼ Ra behaviour.

It is worthwhile to discuss a unique feature of porous-medium heat transport Nu–
Ra scaling in this regard. For regular convection, the so-called classical 1/3 scaling
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results from assuming that the thermal boundary layer adjusts its thickness so as to
be marginally stable to convection within itself (Howard 1964; Doering & Constantin
1998). The same exponent also results from the assumption that there is finite heat
flux into a semi-infinite layer. In either case, the exponent is a consequence of the
fact that the layer thickness h enters the Rayleigh number as h3. For convection in a
porous layer, the same arguments suggest scaling with exponent 1 because h enters
the Rayleigh number linearly, the other two powers of length being supplied by the
square of the (small) pore length scale in the Darcy permeability coefficient K .

The so-called ‘ultimate’ scaling for fluid convection with a 1/2 exponent results from
various assumptions. It was originally derived (with logarithmic corrections) from a
statistical closure theory by Kraichnan (1962). As pointed out by Spiegel (1971),
it also follows from the assumption, in the spirit of Kolmogorov, that a ‘residual’
transport remains even in the limit of vanishing microscopic transport coefficients.
That is, Nu ∼ (PrRa)1/2 is the only possibility if the physical heat flux is finite and
non-vanishing in the limit of vanishing thermal conduction and fluid viscosity.† For
convection in a porous layer, the same argument – that the physical heat flux becomes
independent of the thermal conduction coefficient at high Ra – suggests scaling with
exponent 1, the same as the classical exponent. Hence in the problem at hand, a
crossover to a different exponent as Ra increases indefinitely might not be expected.
Although it appears to be a reliable result from the simulations reported here, we
do not know the physical source of the ‘anomalous’ scaling with the exponent ≈0.9
observed at the highest Rayleigh numbers. Hence we cannot predict whether or not
this is a transient state and if the ‘classical-ultimate’ Nu ∼ Ra1 scaling will eventually
reappear.

We also derived new and improved upper limits for the Nusselt number as a
function of the Rayleigh number. At high Rayleigh numbers the bounds display the
classical scaling with an explicit prefactor: Nu � 0.0297 × Ra. In order to compare
the numerical upper bound with the simulation data, we plot the heat transport for the
simulations and our hybrid analytical/numerical bound on the same graph in figure 6.
This plot also includes simulation data from Graham & Steen (1994) (indicated by
squares) as well as data (indicated with plus signs) from another increasing Ra
simulation run using a completely different numerical scheme (Kurganov, Noelle &
Petrova 2001) than that discussed in § 3. All of these simulations produce solutions
that agree extremely well in their heat transport properties. In the intermediate
Ra range where the classical scaling is observed, the upper bound is less than a
factor of 2 above the data. At its worst at Ra = 104, the numerical bound (valid
in two or three dimensions) is about a factor of 4 above the (two-dimensional)
simulation data. It appears from the plot that the simulation is drifting away from
the bound as the highest Ra data apparently scales with an exponent slightly less than
unity.

Not unexpectedly, we cannot rule out the possibility that the rigorous upper
bounds may be improved. An exact solution of the variational problem, akin to the
recent analysis for fluid convection by Plasting & Kerswell (2003), would probably
produce some further improvement, at least in the prefactor. But it is not possible to
predict if a correction to the classical-ultimate scaling is to be found in the optimal
bound. A recent application of Busse’s multiple boundary layer analysis via Howard’s

† Kraichnan’s theory and the Kolmogorov–Spiegel argument predict different Prandtl number
dependences, while the rigorous upper bounds ∼Ra1/2 are uniform in the Prandtl number.
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Figure 6. Lower envelope of the bounds displayed in figure 5 (solid line) together with the data
from the numerical simulations. The heat transport data from (Graham & Steen 1994) are included
(squares) as well. Also shown are data from another increasing Ra simulation using a completely
different numerical scheme and run protocol (indicated +).

statistically steady power integral method by Vitanov (2000) suggests that such an
approach may help to settle this question, but we are not yet able to extract the
high-Rayleigh-number behaviour of the bound from that theory.

It is evident that high-Rayleigh-number convection in a fluid-saturated porous layer
displays a rich range of dynamics with curious heat transport properties. Although
at high Rayleigh numbers this model is difficult to realize reliably in laboratory
experiments, it is attractively accessible to both computation and analysis. And further
understanding of the processes determining the heat transport in this relatively simple
system is likely to shed light on the more complicated – and more widely applicable –
problem of high-Rayleigh-number turbulent convection in Boussinesq fluids.
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